报告人:邝国权 助理教授(台湾国立成功大学)
报告题目:On almost Schur's lemma
报告时间:2015年4月2日 下午3点
报告地点:数学系实验室
报告人简介:邝国权,主要从事广义相对论和几何分析的研究。2011年获得香港中文大学博士学位,先后在澳大利亚Monash大学和美国迈阿密大学做博士后,目前任台湾国立成功大学数学系助理教授。在Journal of Geometric Analysis,Comunications in Analysis and Geometry,Pacific Journal of Mathematics 等国际权威刊物上发表论文8篇。
摘要: It is a wellknown result of Schur, that for a Riemannian manifold of dimension greater than two, if the traceless Ricci tensor is zero, then its scalar curvature is constant. In this talk, I will discuss a stability result for submanifolds in space forms. More precisely, I will explain how the L^2 norm of the traceless Newton tensor on a submanifold controls the deviation of its (higher order) mean curvature from its average value. This can be regarded as the quantitative version of Schur's result. I will also give a version of this kind of result which involves the full curvature tensor.
欢迎广大师生参加!